Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Org Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607989

RESUMO

Myrosinase (Myr), as a unique ß-thioglucosidase enzyme capable of converting natural and gut bacterial metabolite glucosinolates into bioactive agents, has recently attracted a great deal of attention because of its essential functions in exerting homeostasis dynamics and promoting human health. Such nutraceutical and biomedical significance demands unique and reliable strategies for specific identification of Myr enzymes of gut bacterial origin in living systems, whereas the dearth of methods for bacterial Myr detection and visualization remains a challenging concern. Herein, we present a series of unique molecular probes for specific identification and imaging of Myr-expressing gut bacterial strains. Typically, an artificial glucosinolate with an azide group in aglycone was synthesized and sequentially linked with the probe moieties of versatile channels through simple click conjugation. Upon gut bacterial enzymatic cleavage, the as-prepared probe molecules could be converted into reactive isothiocyanate forms, which can further act as reactive electrophiles for the covalent labeling of gut bacteria, thus realizing their localized fluorescent imaging within a wide range of wavelength channels in live bacterial strains and animal models. Overall, our proposed method presents a novel technology for selective gut bacterial Myr enzyme labeling in vitro and in vivo. We envision that such a rational probe design would serve as a promising solution for chemoprevention assessment, microflora metabolic mechanistic study, and gut bacterium-mediated physiopathological exploration.

2.
Acta Psychol (Amst) ; 246: 104248, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598923

RESUMO

Well-being is one of the central topics in psychology, and research on this topic has shifted from emotional experiences to flourishing life in recent years. Seligman's PERMA model is a prominent theory in this shift. However, this model is proposed in Western culture and has yet to be empirically validated in the Chinese context. The present research aims to examine the applicability of the five-dimension PERMA-Profiler in Chinese culture, which has been developed based on the PERMA model. A sample of 1468 Chinese adults participated in the research. After translation and validation, a series of psychometric analyses were conducted to examine the internal consistency reliability, construct validity, convergent and discriminant validity, and factorial invariance across genders. The PERMA-Profiler Chinese showed high Cronbach's alpha coefficients (α = 0.79-0.88), good divergent (r = -0.19 to -0.38) and convergent validity (r = 0.53-0.85), as well as satisfactory structural validity. Results of the structural validity demonstrated a better fit to the first-order model with five correlated factors after modification (χ2/df = 4.65, RMSEA = 0.058, SRMR = 0.030, CFI = 0.943, TLI = 0.924) than the second-order model with a higher-order factor of well-being. However, the engagement dimension of the PERMA-Profiler Chinese could be improved further. In conclusion, the PERMA model is applicable to the Chinese culture, and the PERMA-Profiler provides a valid measure of well-being for Chinese adults.

3.
Int J Occup Saf Ergon ; : 1-12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509715

RESUMO

Objectives. This study explores the effects of temperature steps on thermal responses to understand abrupt temperature shifts faced by heat-exposed workers during winter. Methods. Three temperature step changes with three phases (S20: 20-40-20 °C, S30: 10-40-10 °C, S40: 0-40-0 °C) were conducted. Phase 1 took 30 min, phase 2 took 60 min and phase 3 took 40 min. Eleven participants remained sedentary throughout the experiment, and physiological responses, thermal perception and self-reported health symptoms were recorded. Results. In temperature up steps, steady skin temperature and sweating onset were delayed, and heart rate dropped by 10 bpm from S20 to S40. In temperature down steps to cold conditions, individuals transitioned from thermal comfort to discomfort and eventually cold strain. Blood pressure increased in temperature down steps, correlating with temperature step magnitudes. Thermal responses to temperature steps of equal magnitude but opposite directions were asymmetries, which weakened as step magnitude increased. Thermal perceptions responded faster than physiological changes after temperature steps, while self-reported health symptoms lagged behind physiological responses. Conclusions. These findings contribute to expanding basic data to understand the effects of temperature step magnitude and direction.

4.
Int J Obes (Lond) ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374247

RESUMO

BACKGROUND: Asprosin (ASP) is a newly discovered adipokine secreted by white adipose tissue (WAT), which can regulate the homeostasis of glucose and lipid metabolism. However, it is not clear whether it can regulate the browning of WAT and mitophagy during the browning process. Accordingly, this study aims to investigate the effects and possible mechanisms of ASP on the browning of WAT and mitophagy in vivo and in vitro. METHODS: In in vivo experiments, some mouse models were used including adipose tissue ASP-specific deficiency (ASP-/-), high fat diet (HFD)-induced obesity and white adipose browning; in in vitro experiments, some cell models were also established and used, including ASP-deficient 3T3-L1 preadipocyte (ASP-/-) and CL-316243 (CL, 1 µM)-induced browning. Based on these models, the browning of WAT and mitophagy were evaluated by morphology, functionality and molecular markers. RESULTS: Our in vivo data show that adipose tissue-specific deletion of ASP contributes to weight loss in mice; supplementation of ASP inhibits the expressions of browning-related proteins including UCP1, PRDM16 and PGC1ɑ during the cold exposure-induced browning, and promotes the expressions of mitophagy-related proteins including PINK1 and Parkin under the conditions of whether normal diet (ND) or HFD. Similarly, our in vitro data also show that the deletion of ASP in 3T3-L1 cells significantly increases the expressions of the browning-related proteins and decreases the expressions of the mitophagy-related proteins. CONCLUSIONS: These data demonstrate that ASP deletion can facilitate the browning and inhibit mitophagy in WAT. The findings will lay an experimental foundation for the development of new drugs targeting ASP and the clinical treatment of metabolic diseases related to obesity.

5.
New Phytol ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402560

RESUMO

Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.

6.
Chempluschem ; : e202300693, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179846

RESUMO

Zero-dimensional lead halide perovskite nanocrystals (NCs) exhibit size-dependent bandgap and carrier confinement compared to bulk counterparts due to the quantum confinement effect, making them essential for achieving wide-color-gamut displays, studying excitonic spin relaxation, and constructing superlattices. Despite their promising potential, they face a variety of technical bottlenecks, such as insufficient color reproducibility, limited large-scale production, low stability, and toxicity. An outline of a research roadmap is provided in the review, which highlights key challenges in developing perovskite NCs for commercial applications.

7.
ACS Nano ; 18(4): 3234-3250, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214975

RESUMO

A brain-targeting nanodelivery system has been a hot topic and has undergone rapid progression. However, due to various obstacles such as the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), few nanocarriers can achieve brain-targeting through oral administration. Herein, an intelligent oral brain-targeting nanoparticle (FTY@Man NP) constructed from a PLGA-PEG skeleton loaded with fingolimod (FTY) and externally modified with mannose was designed in combination with a glucose control strategy for the multitarget treatment of Alzheimer's disease (AD). The hydrophilic and electronegative properties of the nanoparticle facilitated its facile penetration through the mucus barrier, while the mannose ligand conferred IEB targeting abilities to the nanoparticle. Subsequently, glycemic control allowed the mannose-integrated nanoparticle to hitchhike the glucose transporter 1 (GLUT1) circulation across the BBB. Finally, the released FTY modulated the polarity of microglia from pro-inflammatory M1 to anti-inflammatory M2 and normalized the activated astrocyte, enhancing the clearance of toxic protein Amyloid-ß (Aß) while alleviating oxidative stress and neuroinflammation. Notably, both in vitro and in vivo results have consistently demonstrated that the oral administration of FTY@Man NP could effectively traverse the multiple barriers, thereby exerting significant therapeutic effects. This breakthrough holds the promise of realizing a highly effective orally administered treatment for AD.


Assuntos
Doença de Alzheimer , Nanopartículas , Humanos , Doença de Alzheimer/tratamento farmacológico , Transportador de Glucose Tipo 1/metabolismo , Manose , Barreira Hematoencefálica/metabolismo , Peptídeos beta-Amiloides/metabolismo
8.
J Control Release ; 366: 519-534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182059

RESUMO

Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso , Humanos , Encéfalo , Nariz , Encefalopatias/tratamento farmacológico , Nanotecnologia , Sistemas de Liberação de Medicamentos
9.
Pharmacol Res ; 200: 107068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232908

RESUMO

Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.


Assuntos
Antígenos CD , Leucopenia , Humanos , Camundongos , Animais , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1 , Antígenos CD/genética , Antígenos de Diferenciação/genética , Glicoproteínas de Membrana , Peixe-Zebra/metabolismo , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico
10.
Quant Imaging Med Surg ; 14(1): 98-110, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223126

RESUMO

Background: The spleen is a frequent organ of leukemia metastasis. This study aimed to investigate the value of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) for assessing pathologic changes in the spleen and identifying early spleen involvement in patients with acute leukemia (AL). Methods: Patients with newly diagnosed AL and healthy controls were recruited between June 2020 and November 2022. All participants underwent abdominal IVIM diffusion-weighted imaging (DWI) at our hospital. IVIM parameters [pure diffusion coefficient (D); pseudo-diffusion coefficient (D*); and pseudo-perfusion fraction (f)] of the spleen were calculated by the segmented fitting method, and perfusion-diffusion ratio (PDR) was further calculated from the values of D, D* and f. Spleen volumes (SVs) were obtained by manually segmenting the spleen layer by layer. Clinical biomarkers of AL patients were collected. Patients were divided into splenomegaly group and normal SV group according to the individualized reference intervals for SV. IVIM parameters were compared among the control group, AL with normal SV group, and AL with splenomegaly group using one-way analysis of variance, followed by pairwise post hoc comparisons. The correlations of IVIM parameters with clinical biomarkers were analyzed in AL patients. The diagnostic performances of IVIM parameters and their combinations for differentiating among the three groups were compared. Results: Seventy-nine AL patients (AL with splenomegaly: n=54; AL with normal SV: n=25) and 55 healthy controls were evaluated. IVIM parameters were significantly different among the three groups (P<0.001 for D, D* and f; P=0.001 for PDR). D and PDR showed significant differences between the control and AL with normal SV groups in pairwise comparisons (P<0.001, and P=0.031, respectively). D was correlated with white blood cell (WBC) counts (r=-0.424; 95% CI: -0.570, -0.211; P<0.001), lactate dehydrogenase (LDH) (r=-0.285; 95% CI: -0.486, -0.011; P=0.011), and bone marrow blasts (r=-0.283; 95% CI: -0.476, -0.067; P=0.012). D* (r=-0.276; 95% CI: -0.470, -0.025; P=0.014), f (r=0.514; 95% CI: 0.342, 0.664; P<0.001) and PDR (r=0.343; 95% CI: 0.208, 0.549; P=0.002) were correlated with LDH. The combination of IVIM parameters (AUC: 0.830; 95% CI: 0.729, 0.905) demonstrated better diagnostic efficacy than the single D* (AUC: 0.721; 95% CI: 0.608, 0.816; Delong test: Z=2.012, P=0.044) and f (AUC: 0.647; 95% CI: 0.532, 0.752; Delong test: Z=2.829, P=0.005), but was not significantly different from the single D (AUC: 0.756; 95% CI: 0.647, 0.846; Delong test: Z=1.676, P=0.094) in differentiating the splenomegaly group and normal SV group. Conclusions: IVIM diffusion-weighted MRI could be a potential alternative for assessing pathologic changes in the spleen from cellularity and angiogenesis, and D and PDR may be viable indicators to identify early spleen involvement in patients with AL.

11.
Comput Struct Biotechnol J ; 23: 369-383, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38226313

RESUMO

Background: Inflammatory responses influence the outcome of immunotherapy and tumorigenesis by modulating host immunity. However, systematic inflammatory response assessment models for predicting cancer immunotherapy (CIT) responses and survival across human cancers remain unexplored. Here, we investigated an inflammatory response score model to predict CIT responses and patient survival in a pan-cancer analysis. Methods: We retrieved 12 CIT response gene expression datasets from the Gene Expression Omnibus database (GSE78220, GSE19423, GSE100797, GSE126044, GSE35640, GSE67501, GSE115821 and GSE168204), Tumor Immune Dysfunction and Exclusion database (PRJEB23709, PRJEB25780 and phs000452.v2.p1), European Genome-phenome Archive database (EGAD00001005738), and IMvigor210 cohort. The tumor samples from six cancers types: metastatic urothelial cancer, metastatic melanoma, gastric cancer, primary bladder cancer, renal cell carcinoma, and non-small cell lung cancer.We further established a binary classification model to predict CIT responses using the least absolute shrinkage and selection operator (LASSO) computational algorithm. Findings: The model had high predictive accuracy in both the training and validation cohorts. During sub-group analysis, area under the curve (AUC) values of 0.82, 0.80, 0.71, 0.7, 0.67, and 0.64 were obtained for the non-small cell lung cancer, gastric cancer, metastatic urothelial cancer, primary bladder cancer, metastatic melanoma, and renal cell carcinoma cohorts, respectively. CIT response rates were higher in the high-scoring training cohort subjects (51%) than the low-scoring subjects (27%). The five-year survival rates in the high- and low score groups of the training cohorts were 62% and 21%, respectively, while those of the validation cohorts were 54% and 22%, respectively (P < 0·001 in all cases). Inflammatory response signature score derived from on-treatment tumor specimens are highly predictive of response to CIT in patients with metastatic melanoma. A significant correlation was observed between the inflammatory response scores and tumor purity. Regardless of the tumor purity, patients in the low score group had a significantly poorer prognosis than those in the high score group. Immune cell infiltration analysis indicated that in the high score cohort, tumor-infiltrating lymphocytes were significantly enriched, particularly effector and natural killer cells. Inflammatory response scores were positively correlated with immune checkpoint genes, suggesting that immune checkpoint inhibitors may have benefited patients with high scores. Analysis of signature scores across different cancer types from The Cancer Genome Atlas revealed that the prognostic performance of inflammatory response scores for survival in patients who have not undergone immunotherapy can be affected by tumor purity. Interleukin 21 (IL21) had the highest weight in the inflammatory response model, suggesting its vital role in the prediction mode. Since the number of metastatic melanoma patients (n = 429) was relatively large among CIT cohorts, we further performed a co-culture experiment using a melanoma cell line and CD8 + T cell populations generated from peripheral blood monocytes. The results showed that IL21 therapy combined with anti-PD1 (programmed cell death 1) antibodies (trepril monoclonal antibodies) significantly enhanced the cytotoxic activity of CD8 + T cells against the melanoma cell line. Conclusion: In this study, we developed an inflammatory response gene signature model that predicts patient survival and immunotherapy response in multiple malignancies. We further found that the predictive performance in the non-small cell lung cancer and gastric cancer group had the highest value among the six different malignancy subgroups. When compared with existing signatures, the inflammatory response gene signature scores for on-treatment samples were more robust predictors of the response to CIT in metastatic melanoma.

12.
New Phytol ; 241(2): 650-664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37908121

RESUMO

Seed germination is a critical trait for the success of direct seeding in rice cultivation. However, the underlying mechanism determining seed germination is largely unknown in rice. Here, we report that NAC transcription factor OsNAC3 positively regulates seed germination of rice. OsNAC3 regulates seed germination involving abscisic acid (ABA) pathway and cell elongation. OsNAC3 can directly bind to the promoter of ABA catabolic gene OsABA8ox1 and cell expansion gene OsEXP4, which consequently activates their expressions during seed germination. We also find that the expression of OsEXP4 is reduced by ABA during seed germination in rice. OsNAC3 regulates seed germination by influencing cell elongation of the embryo through directly affecting OsEXP4 expression and indirectly ABA-medicated OsEXP4 expression. The OsNAC3 elite haplotype is useful for genetic improvement of seed germination, and overexpression of OsNAC3 can significantly increase seed germination. We therefore propose that OsNAC3 is a potential target in breeding of rice varieties with high seed germination for direct seeding cultivation.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação/genética , Oryza/metabolismo , Sementes/genética , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas
13.
J Neurol ; 271(3): 1256-1266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947856

RESUMO

OBJECTIVE: Few effective treatments improve upper extremity (UE) function after stroke. Immersive virtual reality (imVR) is a novel and promising strategy for stroke UE recovery. We assessed the extent to which imVR-based UE rehabilitation can augment conventional treatment and explored changes in brain functional connectivity (FC) that were related to the rehabilitation. METHODS: An assessor-blinded, parallel-group randomized controlled trial was performed with 40 subjects randomly assigned to either imVR or Control group (1:1 allocation), each receiving rehabilitation 5 times per week for 3 weeks. Subjects in the imVR received both imVR and conventional rehabilitation, while those in the Control received conventional rehabilitation only. Our primary and secondary outcomes were the Fugl-Meyer assessment's upper extremity subscale (FMA-UE) and the Barthel Index (BI), respectively. Both intention-to-treat (ITT) and per-protocol (PP) analyses were performed to assess the effectiveness of the trial. For both the FMA-UE/BI, a one-way analysis of covariance (ANCOVA) model was used, with the FMA-UE/BI at post-intervention or at follow-up, respectively, as the dependent variable, the two groups as the independent variable, baseline FMA-UE/BI, age, sex, site, time since onset, hypertension and diabetes as covariates. RESULTS: Both ITT and PP analyses demonstrated the effectiveness of imVR-based rehabilitation. The FMA-UE score was greater in the imVR compared with the Control at the post-intervention (mean difference: 9.1 (95% CI 1.6, 16.6); P = 0.019) and follow-up (mean difference:11.5 (95% CI 1.9, 21.0); P = 0.020). The results were consistent for BI scores. Moreover, brain FC analysis found that the motor function improvements were associated with a change in degree in ipsilesional premotor cortex and ipsilesional dorsolateral prefrontal cortex immediately following the intervention and in ipsilesional visual region and ipsilesional middle frontal gyrus after the 12-week follow-up. CONCLUSIONS: ImVR-based rehabilitation is an effective tool that can improve the recovery of UE functional capabilities of subacute stroke patients when added to standard care. These improvements were associated with distinctive brain changes at two post-stroke timepoints. The study results will benefit future patients with stroke and provide evidence for a promising new method of stroke rehabilitation. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03086889.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Encéfalo , Resultado do Tratamento , Extremidade Superior
14.
Adv Mater ; 36(3): e2308393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010256

RESUMO

The abnormal amyloid-ß accumulation is essential and obbligato in Alzheimer's disease pathogenesis and natural polyphenols exhibit great potential as amyloid aggregation inhibitors. However, the poor metabolic stability, low bioavailability, and weak blood-brain barrier crossing ability of natural polyphenol molecules fail to meet clinical needs. Here, a universal protocol to prepare natural polyphenolic nanodots is developed by heating in aqueous solution without unacceptable additives. The nanodots are able to not only inhibit amyloid-ß fibrillization and trigger the fibril disaggregation, but mitigate the amyloid-ß-plaque-induced cascade impairments including normalizing oxidative microenvironment, altering microglial polarization, and rescuing neuronal death and synaptic loss, which results in significant improvements in recognition and cognition deficits in transgenic mice. More importantly, natural polyphenolic nanodots possess stronger antiamyloidogenic performance compared with small molecule, as well as penetrate the blood-brain barrier. The excellent biocompatibility further guarantees the potential of natural polyphenolic nanodots for clinical applications. It is expected that natural polyphenolic nanodots provide an attractive paradigm to support the development of the therapeutics for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo
15.
Mol Nutr Food Res ; 68(1): e2300522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933720

RESUMO

SCOPE: Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS: In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION: These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.


Assuntos
Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Polissacarídeos/farmacologia , Intestinos , Ácidos Graxos Voláteis/metabolismo
16.
FASEB J ; 38(1): e23362, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102979

RESUMO

Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.


Assuntos
Homeostase , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
17.
Nutr Res ; 120: 135-144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000279

RESUMO

Evidence has demonstrated that oxidative stress plays a crucial role in regulating cellular glucose metabolism. In previous studies, wheat germ peptide (WGP) was found to effectively mitigate oxidative stress induced by high glucose. Based on the information provided, we hypothesized that WGP could exhibit antihyperglycemic and anti-insulin-resistant effects in cells. The insulin-resistant cell model was established by insulin stimulation. The glucose consumption, glycogen content, and the activities of hexokinase and pyruvate kinase following WGP treatment were measured. The protein expression of SOCS3, phosphorylated insulin receptor substrate-1 (p-IRS1), IRS1, phosphorylated protein kinase B (p-Akt), Akt, glucose transporter 2 (GLUT2), phosphorylated GSK 3ß, GSK 3ß, FOXO1, G6P, and phosphoenolpyruvate carboxykinase were assessed by western blot analysis. Our results demonstrated that WGP treatment increased cellular glucose consumption and glycogen synthesis and enhanced hexokinase and pyruvate kinase activities. Additionally, WGP treatment was observed to cause a significant reduction in the expression of SOCS3, FOXO1, G6P, and phosphoenolpyruvate carboxykinase, as well as in the ratio of p-IRS1/IRS1. Conversely, the expression of GLUT2 and the ratios of p-Akt/Akt and p-GSK3ß/GSK3ß were upregulated by WGP. These findings suggested that WGP can activate the SOCS3/IRS1/Akt signaling pathway, thus promoting the phosphorylation of GSK-3ß and increasing the expression of FOXO1 and GLUT2, which contribute to enhancing glycogen synthesis, inhibiting gluconeogenesis, and promoting glucose transport in insulin-resistant HepG2 cells.


Assuntos
Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Triticum , Proteínas Substratos do Receptor de Insulina/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Piruvato Quinase/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Hepatócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
18.
J Clin Pediatr Dent ; 47(6): 155-162, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997247

RESUMO

Unilateral complete cleft lip and palate (UCCLP) is one of the most severe clinical subphenotypes among nonsyndromic cleft lip and/or palate (NSCL/P), that complicates surgical repair operations. Presurgical nasoalveolar molding (PNAM) is a technique used to reshape the nose, lip and alveolar bone of infants with UCCLP before surgery (the modified Mohler rotation advancement cheiloplasty and two flap palatoplasty), with the potential to facilitate surgical repair. However, the effectiveness of PNAM treatment is still a matter of debate. In this paper, the 3Shape scanning system and 3dMD stereophotography were used to assess the short-term and long-term effects of PNAM treatment on the dental arch morphology and nasolabial features of patients with UCCLP, respectively. The findings indicated that PNAM treatment negatively affects both short-term and long-term dental arch shape compared to the treatment without PNAM, particularly in terms of limiting the transverse width of the maxillary canine-to-midline. Regarding the nasal and labial symmetry, PNAM improves the symmetry of the nasal alae in patients over 7 years old and the symmetry of the lip in patients under 7 years old. Moreover, UCCLP patients who received PNAM treatment exhibited a shorter and wider shape of the nostril on the cleft side compared to those without PNAM treatment. In clinical practice, the multidisciplinary team should carefully consider the advantages and disadvantages of the outcomes of PNAM treatment when treating infants with cleft lip and palate.


Assuntos
Fenda Labial , Fissura Palatina , Lactente , Humanos , Criança , Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Moldagem Nasoalveolar , Arco Dental , Processo Alveolar , Cuidados Pré-Operatórios/métodos , Nariz
19.
Opt Express ; 31(23): 39250-39260, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018008

RESUMO

The Mamyshev oscillator (MO) is a promising platform to generate high-peak-power pulse with environmentally stable operation. However, rare efforts have been dedicated to unveil the dynamics from seed signal to oscillator pulse, particularly for the multi-pulse operation. Herein, we investigate the buildup dynamics of the oscillator pulse from the seed signal in a fiber MO. It is revealed that the gain competition among the successively injected seed pulses leads to higher pump power that is required to ignite the MO, hence resulting in the higher optical gain that supports buildup of multiple oscillator pulses. The multiple oscillator pulses are identified to be evolved from the multiple seed pulses. Moreover, the dispersive Fourier transform (DFT) technique is used to reveals the real-time spectral dynamics during the starting process. As a proof-of-concept demonstration, a highly intensity-modulated pulse bunch was employed as the seed signal to reduce the gain competition effect and avoid the multi-pulse starting operation. The experimental results are verified by numerical simulations. These findings would give new insights into the pulse dynamics in MO, which will be meaningful to the communities interested in ultrafast laser technologies and nonlinear optics.

20.
Environ Sci Pollut Res Int ; 30(51): 110956-110969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798517

RESUMO

Di-(2-ethylhexyl)-phthalate (DEHP) is a ubiquitous environmental pollutant and is widely used in industrial plastics. Intrahepatic cholestasis of pregnancy (ICP), distinguished by maternal pruritus and elevated serum bile acid levels, is linked to unfavorable pregnancy consequences. Few studies have investigated the potential effect of gestational DEHP exposure on the cholestasis in pregnant female mice, and the underlying mechanisms remain unclear. In the present study, a mouse model of cholestasis during pregnancy was established by DEHP exposure. We found that DEHP induces elevated bile acid levels by affecting bile acid synthesis and transporter receptor expression in the maternal liver and placenta of pregnant female mice, ultimately leading to intrauterine growth restriction (IUGR). In addition, DEHP changed the bile acid composition of maternal serum and liver as well as placenta and amniotic fluid in pregnant female mice; Importantly, we found that DEHP down-regulates the expression of farnesoid X receptor (FXR), which is considered to be a bile acid receptor. FXR agonist obeticholic acid (OCA) effectively alleviated the adverse effects of DEHP on pregnant female mice. While, OCA itself had no adverse effects on normal pregnant female mice. In summary, DEHP could induces bile acid disorder and IUGR in pregnant female mice by affect FXR, which was reversed by OCA.


Assuntos
Colestase , Dietilexilftalato , Gravidez , Humanos , Feminino , Animais , Camundongos , Ácidos e Sais Biliares/toxicidade , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/metabolismo , Dietilexilftalato/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...